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Large deviation function for the Eden model and universality within the one-dimensional
Kardar-Parisi-Zhang class
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~Received 20 August 1999!

It has been recently conjectured that for large systems, the shape of the central part of the large deviation
function of the growth velocity would be universal for all the growth systems described by the Kardar-Parisi-
Zhang equation in 111 dimension. One signature of this universality would be that the ratio of cumulants
Rt5@^ht

3&c#
2/@^ht

2&c^ht
4&c# would tend towards a universal value 0.415 17 . . . ast tends to infinity, provided

periodic boundary conditions are used. This has recently been questioned by Stauffer. In this paper we
summarize various numerical and analytical results supporting this conjecture, and report in particular some
numerical measurements of the ratioRt for the Eden model.

PACS number~s!: 02.50.2r, 05.70.Ln, 82.20.Mj
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I. INTRODUCTION

Phenomena ranging from growth processes to direc
polymers in random media can be described on a large s
by the Kardar-Parisi-Zhang~KPZ! equation. In previous pa
pers Derridaet al. @1,2# have conjectured that for all~111!-
dimensional models within the KPZ class, the large deviat
function associated with the heightht of the interface follows
some universal scaling in the limit of large systems.

If this conjecture is true, then it implies in particular th
for periodic boundary conditions, the ratio of cumulants

Rt5
@^ht

3&c#
2

^ht
2&c^ht

4&c
~1!

converges towards a universal value 0.415 17 . . . ast tends
to infinity. Here,ht is the space-averaged height, and^•••&
refers to ensemble averages.

In answer to some objections this conjecture raised,
find it useful to explain more precisely in which frame w
expect universality. It will also be an opportunity to summ
rize how the conjecture has been verified in some other m
els, since our last publication@3#.

In Sec. IV, we shall explain why the numerical resu
presented by Stauffer@4# for the Eden model are in fact no
in contradiction with our conjecture. In order to sustain o
claim, we present numerical results for the Eden model
have been performed in the proper frame.

II. CONJECTURE OF UNIVERSALITY

In this section, we shall first recall the content of t
conjecture. Though the KPZ equation can describe syst
as different as particles moving on a lattice or directed po
mers in random media, we shall consider only growth m
els, in order to simplify the presentation. The extension
other applications should be straightforward.

We consider a discrete growth model on a on
dimensional lattice ofN sites, with periodic boundary cond
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tions. At each time step, a growth event—whatever it is
occurs in each site with probabilitydt.

The quantityht whose distribution we are interested in
the space-averaged height aftert time steps. Note that in
@1,2#, the variable under consideration was ratherYt5Nht .
That is why the formulation of the results may slightly diffe
here. Equivalently, we shall use as a variable, the avera
velocity v t5ht /t.

If t is large enough, the probability distributionP(ht)
should become independent of the initial condition. In t
long time limit, the large deviation functionf is defined as

f ~v !5 lim
t→`

ln P~vt !

t
. ~2!

For large systems, we conjecture that when the devia
of v from its averagev̄ is at most of order 1/N, the large
deviation function takes the form

f ~v !5KHS N
v2 v̄

v̄
D , ~3!

whereH has the following asymptotic behavior:

H~V!52V21O~V!3 for uVu!1,

H~V!.2@2A3/~5Ap!#V5/2 for V→1`,

H~V!.2@4Ap/3#uVu3/2 for V→2`.

The coefficientK is defined as

K5
1

2N2

v̄2

lim
t→`

~^ht
2&c /t !

, ~4!

where^ht
2&c is the second cumulant. The rescaling factorK

is model dependant, but the shapeH is expected to be the
same for all microscopic models belonging to the KPZ cla

Note that the shapeH given above may reflect the type o
boundary conditions we use. For example, we may hav
2092 ©2000 The American Physical Society
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different result for open boundary conditions. However,H is
conjectured to be universal in the sense that it would be
same forany microscopic model, given that we keep th
same geometrical constraints—in our case periodic boun
conditions.

The knowledge of the central part of the large deviat
function determines all the cumulants^ht

n&c , as explained in
the Appendix. The universality of the limit of Eq.~1! is a
direct consequence of the universality of the shape Eq.~3!.

III. ANALYTICAL VERIFICATION OF THE
CONJECTURE

In this section, we summarize the analytical results t
have been obtained for the large deviation function on
ferent models. First, the conjecture had been proposed
the large deviation function had been calculated for one s
cial model of the KPZ class, namely, the asymmetric exc
sion process~ASEP!.

In the ASEP, one considers a system ofp particles mov-
ing on a ring ofN sites. During every time intervaldt, each
particle jumps to the next site on its right with probabilitydt,
if this site is empty. Otherwise, it does not move.

Of course, for this model, the large deviation function@2#
does verify the scaling~3!, with

K5Ar~12r!

pN3

and

v̄5
N

N21
r~12r!.

Since then, Lee and Kim@5# have extended the result t
the partially asymmetric exclusion process, i.e., to the c
where particles are allowed to jump either to the right or
the left with probabilities (11e)dt/2 or (12e)dt/2. To do
so, they have used the formalism of quantum spin cha
and found again the form~3! with

K5eAr~12r!

pN3

and

v̄5e
N

N21
r~12r!.

Brunet and Derrida have been considering directed p
mers pinned on impurities. This model belongs to the K
class if we consider that the height of the interface cor
sponds now to the free energy for a polymer of lengtht.
According to some preliminary results, it seems that the s
ing Eq.~3! for the large deviation function, and thus also t
universal asymptotic value forRt , are verified@6#.

IV. NUMERICAL MEASUREMENTS FOR THE RATIO
OF CUMULANTS RT

For most models, however, analytical results are hard
obtain. It is more convenient to check numerically wheth
e

ry

t
f-
ter
e-
-

e

s,

-
Z
-

l-

to
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the ratio of cumulantRt converges towards the conjecture
universal value 0.415 17 . . . when t tends to infinity, in the
limit of a large system.

It must be noticed that, as we are interested in the sta
tics up to the fourth moment, of a quantity that is itself
average over a huge number of data, this calculation is e
mously demanding in terms of computer time. Besides,
determineRt from a given simulation, we have less and le
statistics ast increases. This is why fluctuations become im
portant for larget.

Thus, our numerical calculations are more indications
favor of the conjecture, rather than real numerical proo
However, we find them quite significant. In@2#, some simu-
lations had been performed for various deposition model

Following this work, Stauffer had published@4# some nu-
merical results obtained for the Eden model, which seem
in contradiction with the conjecture. We think there is in fa
no contradiction. The discrepancy comes from the definit
of time. If time is defined in the way we advocate belo
then our numerical results are clearly compatible with
conjecture.

First we recall the definition of the Eden model. We st
consider an interface growing on a ring withN sites. At each
time step, we choose one of the boundary sites, i.e., an em
site that has at least one side in common with an occup
site ~this would correspond to versionA in Ref. @7#!. When a
boundary site is chosen, it becomes occupied and its em
neighbors become boundary sites.

As the shape of the interface varies with time, so does
numberNB of boundary sites. In the continuous limit, at ea
time stepdt, each boundary site should be chosen with pro
ability dt. This means that the largerNB , the more probable
it is that at least one site will be chosen.

In order to take this effect into account in numerical sim
lations, time should not be incremented by a constant amo
between two choices of a boundary site. The time increm
should be weighted by 1/NB @8#.

This is the main difference between our numerical sim
lations and Stauffer’s. Stauffer was using the original vers
of the Eden model@9#, where time is not weighted. With th
weighted definition of time, we find that our simulations pr
sented in Fig. 1 are compatible with the conjecture.

Stauffer’s results give an indication that the original Ed
model would not belong to the KPZ class. This could
expected from the following simple argument. As we e
plained above, taking a weighted time implies that an ev
may occur in each site independently. If we take a no
weighted time, this implies implicitly that the probability fo
an event to occur in a given site depends on the shape o
interface in the whole system. Thus the growth rules are
local any more, and it is not so surprising that the mode
not in the KPZ class.

V. CONCLUSION

After rephrasing the universality conjecture of@1#, we
have summarized several analytical and numerical res
obtained for different models that confront the conjectu
We have presented here some simulation results indica
that also in the case of the Eden model, the cumulant ratioRt
tends towards the conjectured value 0.415 17 . . . in thelarge
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time limit and for large systems, provided that the prop
definition of time is chosen.

Here we have considered only sequential dynamics.A pri-
ori, we would expect the same scaling if parallel dynam
were used, as long as the process remains stochast~if
heights would grow in parallel with probability one, o
course no fluctuations would appear with time!. It would be
interesting to have numerical or analytical results in t
case.

FIG. 1. Cumulant ratioRt as a function of time for different
system sizes. The horizontal dot-dashed line gives the expe
asymptotic value for an infinite system in the infinite time limit. Th
statistics were accumulated, respectively, during 1011, 8.5
31010,2.331010, and 83109 time units, for the system sizesL
510, L520, L540, andL580. Time is defined in such a wa
that at each time stepdt, each boundary site may be chosen w
probability dt.
r
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APPENDIX

As indicated in Ref.@2#, the cumulants in the long time
limit are obtained as

lim
t→`

^ht
n&c

t
5

dnl~a!

dan U
a50

, ~A1!

where the functionl(a) is related to the large deviatio
function f (v) by

l~a!5max
v

@ f ~v !1av#. ~A2!

For a50, the maximum is achieved for the mean veloc

ṽ5 v̄. For generala, the velocity ṽ corresponding to the
maximum is found as a solution of

a1 f 8~ ṽ !50. ~A3!

For small a, this equation can be solved by expandingṽ
2 v̄ in powers ofa. Reporting the result into Eq.~A2! yields
an expansion ofl(a) in powers ofa whose coefficients
are—up to simple factors—the cumulants. In particular,
first two terms of the expansion just give the definition of t
mean velocitŷ ht&5 v̄ and the definition~4! of K.
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